top of page

Publications

Publications

 

PhD dissertation

 

Wang, G. R. (2000) Turbulent mixing, stability and secondary flow in a confined configuration.  Wissenschaftliche Schriftenreihe Stroemungstechnik, Bd. 8. ISBN 3-89574-376-3, Verlag Dr. Koester.

 

Patents

 

  1. Feng, J. J.; Guiren Wang, Kapil Pant, Shankar Sundaram (2011) Method and Apparatus for Separating Particles by Dielectrophoresis. US Patent 7,998,328.

  2. Wang; G; Sundaram, S; Pant, K; Feng J, P. Storm (2010) MEMS based microcatheter for thrombectomy. US patent, 7,842,006.

  3. Pant, K; G Wang; JJ Feng; S. Krishnamoorthy; S. Sundaram (2010) Electrostatic sampler and method. US Patent 7428848.

  4. Wang, G. R.; Jiang, H. (2007) Method and Apparatus for fluid velocity measurement based on photobleaching. US patent, 7283215B2.

  5. Krishnamoorthy, S.; G Wang; Feng J. (2006) Travelling wave electrothermal pump. Submitted to US patent (pending)

  6. Fiedler, H. E.; Wang, G. R. (1998a) A new process for rapid and homogeneous mixing of fluids in continuous operations (in German). Deutsches Patent No. 19816354.1.

  7. Fiedler, H. E.; Wang, G. R. (1998b) Anemometer based on the effect of photobleaching (in German). Deutsches Patent. No. 19838344.4.

  8. Fiedler, H. E.; Wang, G. R. (1998c) Efficient heat exchanger through confined symmetric and asymmetric wakes in a pipe (in German). Deutsches Patent. No. 19850190.0.

 

Peer reviewed Journals

 â€‹

  1. Fang Yang, Wei Zhao, GuirenWang. Electrokinetic mixing of two fluids with equivalent conductivity. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2021.03.032

  2. Zhongyan Hu; Tianyun Zhao; Wei Zhao; Fang Yang; Hongxun Wang; Kaige Wang; Jintao Bai; Guiren Wang Transition from periodic to chaotic AC electroosmotic flows near electric double layer. AIChE Journal 2021. DOI: 10.1002/aic.17148.

  3. Hu, Zhongyan; Zhao, Tianyun; Wang, Hongxun; Zhao, Wei; Wang, Kaige; Bai, Jintao; Wang, Guiren Asymmetric temporal variation of oscillating AC electroosmosis with a steady pressure-driven flow. Experiments in Fluids, 61, article id.233. 2020 DOI: 10.1007/s00348-020-03060-z.

  4. Keyi Nan , Zhongyan Hu, Wei Zhao, Kaige Wang, Jintao Bai and Guiren Wang Large-Scale Flow in Micro Electrokinetic Turbulent Mixer. Micromachines 2020, 11, 813; doi:10.3390/mi11090813

  5. Libo Zhang, Andrew Beatty, Lin Lu, Akrm Abdalrahman, Thomas Makrisa, Guiren Wang, Qian Wang. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functional nanoparticles. Materials Science & Engineering C. 2020. DOI: 10.1016/j.msec.2020.110768

  6. Yunxia Wang, Wei Zhao, Kaige Wang, Jintao Bai, Riccardo Juris, Chiara Barattini, Qian Wang, and Guiren Wang  Fluorescent Nanoparticles for Stimulated Emission Depletion Microscopy. Journal of Nanoscience and Nanotechnology. 20, pp. 2308-2315(8), 2020.

  7. Hao Lou, Guiren Wang & LiboYuan A special three-layer step-index fiber for building compact STED systems. Scientific Reports,  9:8455, 2019.

  8. Yuchen Wang, Wenxuan Zhao, Zhongyan Hu, Chen Zhang, Xiaoqiang Feng, Wei Zhao, Guiren Wang and Kaige Wang. Parametric study of the emission spectra and photobleaching time constants of a fluorescent dye in laser induced fluorescence photobleaching anemometer (LIFPA) applications. Experiments in Fluids. 2019, 60:106.

  9. Wei Zhao, Guiren Wang. Cascade of kinetic energy and scalar variance in DC electrokinetic turbulence. Physica D: Nonlinear Phenomena, 399, 42–50, 2019.

  10. Wei Zhao, Guiren Wang. Counter-rotating vortex shedding generated by acoustic excitations in confined mixing layers. AIChEJ. Accepted 2019.

  11. Lin Lu, Ph.D; Libo Zhang; Liang Yuan, Ph.D; Tianyu Zhu; Wilfred Chen; Guiren Wang ; Qian Wang. Artificial Cellulosome Complex from the Self-Assembly of NTANi Functionalized Polymeric Micelles and Cellulases. ChemBioChem, 2019.

  12. Bo Zhou, Xiaolei Zhang, Franklin Berger, Karen W. Barbour, Guiren Wang, Qian Wang. Drug screening assay based on the interaction of intact Keap1 and Nrf2 proteins in cancer cells. Bioorganic & Medicinal Chemistry. 27, 92–99, 2019.

  13. Xue J, Zhao W, Nie T, Zhang C, Ma S, Wang G, Liu S, Li J, Gu C, Bai J, Wang K. Abnormal Rheological Phenomena in Newtonian Fluids in Electroosmotic Flows in a Nanocapillary. Langmuir: the Acs Journal of Surfaces and Colloids. PMID 30418030 DOI: 10.1021/acs.langmuir.8b03112. 2018.

  14. Haiyun Qin, Wei Zhao, Chen Zhang,Yong Liu, Guiren Wang, and Kaige Wang Influence of fluorescence time characteristics on the spatial resolution of CW-stimulated emission depletion microscopy. Chin. Phys. B Vol. 27, 037803. 2018.

  15. Haiyun Qin, Wenxuan Zhao, Wei Zhao, Chen Zhang, Yong Liu, Guiren Wang, Kaige Wang Evaluation of saturation intensity based on the FWHM of CW stimulated emission depletion microscopy. Optik 166, 219–226. 2018.

  16. Wei Zhao, Xin Liu, Fang Yang, Kaige Wang, Jintao Bai, Rui Qiao, and Guiren Wang Study of oscillating electroosmotic flows with high temporal and spatial resolution. DOI: 10.1021/acs.analchem.7b02985, Anal Chem. 2018.

  17. F Shen, Y Li, G Wang, Z Liu. Mechanisms of rectangular groove-induced multiple-microdroplet coalescences. Acta Mechanica Sinica, 33(3):585–594. 2017.

  18. Li X,  Sun D,  Chen Y,  Wang K,  He Q,  Wang G.  Studying compaction-decompaction of DNA molecules induced by surfactants. Biochemical and Biophysical Research Communications. 2017, 495(4):2559-2565.

  19. Duan Yi-fei, Ma Hong-wei, Gao Ze-yang, Wang Kai-ge, Zhao Wei, Sun Dan, Wang Gui-ren, Li Jun-jie, Bai Jin-tao, Gu Chang-zhi.  Reversal current observed in micro- and submicro-channel flow under non-continuous DC electric field. Chinese Physics B 26(6):068203, 2017

  20. Yunxia Wang, Zhenhua Bai, Qian Wang, Guiren Wang. Experimental investigations on fluorescence excitation and depletion of carbon dots. Journal of Fluorescence. DOI 10.1007/s10895-017-2082-6. 2017.

  21. Yifei Duan, Wei Zhao, Jing Xue, Dan Sun, Kaige Wang, Guiren Wang, Junjie Li, Jintao Bai and Changzhi Gu. Current characteristics of λ-DNA molecules/polystyrene nanoparticles in TBE buffer solution through micro/nanofluidic capillaries under DC electric field. J. Phys. D: Appl. Phys. 50 (2017) 125401.

  22. M Wan, D Sun, S Wang, J Wu, Y Yang, K Wang, Qingli Heb, Guiren Wang, Jintao Bai. Colloids and Surfaces B. : Biointerfaces Influence of concentration on distribution properties of stretched-DNA in the MEC studied with fluorescence imaging and drop shape analyzing. 151, 11–18, 2017

  23. Wei Zhao; Fang Yang; Kaige Wang; Jintao Bai; Guiren Wang. Rapid mixing by turbulent-like electrokinetic microflows. Chemical Engineering Science. 165, 113–121, 2017. 

  24. Zhao, W. Wang, G. Scaling of velocity and scalar structure functions in ac electrokinetic turbulence. Phy. Rev. E. 95, 023111, 2017.

  25. Zhao, W. Wang, G. Influence of acoustic resonance on mixing enhancement in confined mixing layers. Chemical Engineering and Processing. 111 67–78, 2017.

  26. Yang. F; Kuang, C; Zhao, W.; Wang, G. AC electrokinetic fast mixing in non-parallel microchannels. Chemical Engineering Communications. 204:190–197, 2017.

  27. H Wang, K Wang, H Ma, S Dan, F Yang, S. Wang, G. Wang, J. Bai. Electrodynamics of DNA Molecules Moving Through Microfluidic Channels Studied with Single Molecular Fluorescence Imaging Technology. Journal of Nanoscience and Nanotechnology 16(7):6986-6991. 2016.

  28. F Yang, K Wang, D Sun, W Zhao, H Wang, X. He, G. Wang and JT Bai Direct observation of λ-DNA molecule reversal movement within microfluidic channels under electric field with single molecule imaging technique. Chin. Phys. B Vol. 25, 078201, 2016.

  29. J. Wu, K. Wang, Y. Zhou, S. Wang, C. Zhang, G. Wang, J. Bai, Synthesis and photoluminescence enhancement of nano-PAA-ZnCl2 with controllable dimension and morphology, Appl. Surf. Sci. 390 122–130. doi.org/10.1016/j.apsusc.2016.08.036. 2016.

  30. G.R. Wang, Fang Yang, Wei On micro-electrokinetic scalar turbulence in microfluidics at low Reynolds number, LabChip, 2016. 1030-1038.

  31. G.R. Wang, Fang Yang, Wei Zhao Microelectrokinetic turbulence in microfluidics at low Reynolds number. Physical Review E, 93, 013106, 2016.

  32. Wei, Zhao, Fang Yang, Jamil Khan, Ken Reifsnider, G.R Wang. Measurement of Velocity Fluctuations in Microuidics with Simultaneously Ultrahigh Spatial and Temporal Resolution. Experiments in Fluids. 56:11, 2016.

  33. Adolga, E. A.; Xu, Y.; Li, H.; Wang, G.; Wang, Q.; "Regioselective inverse Diels-Alder reaction of unsymmetrical tetrazines with aldehydes and ketones", ARKIVOC, 2015 (iv), 1-10.

  34. Wei, Zhao, Fang Yang, Jamil Khan, Ken Reifsnider, G.R Wang. Corrections on LIFPA velocity measurements in microchannel with moderate velocity fluctuations. Experiments in Fluids. 2015, 56:39, 1–10.

  35. HongWei Ma, KaiGe Wang, ZeYang Gao, HaiQing Wang, Shuang Wang, Chen Zhang, GuiRen Wang, JinTao Bai Current characteristic signals of aqueous solution transferring through microfluidic channel under non-continuous DC electric field. AIP ADVANCES 4, 107139 (2014)

  36. ZeYang Gao · KaiGe Wang · Chen Zhang · HongWei Ma · GuiRen Wang · JinTao Bai Studying the current properties of buffer solution through micro-fluidic channels driven with the pulse bias. Science China Technological Sciences, 57, 249–253, 2014.

  37. Chen Zhang, Kaige Wang, Shuang Wang, Yong Liu, Wei Zhao, Xiaoming Chen, Baole Lu, Changzhi Gu, Guiren Wang, and Jintao Bai. Multiple primary aberrations effect on donut-shaped laser beam in high NA focusing system. Journal of Optics. 2014. 16, 125701 (1-7).

  38. Honglin Li, Fengyu Liu , Yi Xiao, Perry J. Pellechia, Mark D. Smith, Xuhong Qian,* Guiren Wang,* and Qian Wang*, Revisit of a series of ICT fluorophores: Skeletal characterization, structural modification and spectroscopic behavior. Tetrahedron 70 (2014) 5872-77.

  39. G.R. Wang, Fang Yang, Wei Zhao There can be turbulence in microfluidics at low Reynolds number. LabChip, 2014. 14. 1452–1458.

  40. Chen Zhang, Kaige Wang, Jintao Bai, Yong Liu, Guiren Wang Simulation Studying Effects of Multiple Primary Aberrations on Donut-shaped Gaussian Beam. DOI: 10.4236/opj.2013.32B001, Optics and Photonics Journal, 3(2B), 1-5 (2013).

  41. Zhang, C.; Wang, K.; Bai, J.; Zhao, W.; Yang, F.; Wang, S.; Gu, C.; Wang, G. Nanopillar array with a λ/11 diameter fabricated by a kind of visible CW laser direct lithography system; Nanoscale Research Letters, 2013. 8, 280.

  42. Li, H.; Guan, H.; Duan, X.; Hu, J.; Wang, G.; Wang, Q.; “An Acid Catalyzed Reversible Ring-closure Reaction of Cyano-Rhodamine Spirolactam”, Organic & Biomolecular Chemistry 2013,  1805–1809.

  43. Cuifang Kuang, Ding Luo, Xu Liu, Guiren Wang Study on factors enhancing photobleaching effect of fluorescent dye. Measurement 46 (2013) 1393–1398.

  44. Mohammed Alshareef, Juarez-Perez, E., Metrakos, N., Xiaoming Yang, Fadi Azer, Fang Yang, G. Wang  Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics 7, 011803 (2013). Special Topic: Microfluidics In Cancer Research.

  45. Ding Luo, Cuifang Kuang, Xu Liu, Guiren Wang Experimental investigations on fluorescence excitation and depletion of ATTO 390 dye. Optics & Laser Technology 45 (2013) 723–725.

  46. Fang Yang, Xiaoming Yang, H Jiang, W. Butler, G. Wang.  Dielectrophoretic Separation of prostate cancer cells. Technology in cancer Research and Treatments. 12:61-70. 2013.

  47. Fang Yang, Xiaoming Yang, H Jiang, G. Wang Cascade and staggered continuous flow dielectrophoretic cell sorters. Electrophoresis. 32, 2377–2384, 2011.

  48. Kaige Wang, Weijun Dang1, Dan Xi, Jintao Bai, Changzhi Gu, Guiren Wang Hybridized functional micro-nano structure for studying the kinetics of single biomolecule.  Micro & Nano Letters. 6, 292–295, 2011.

  49. Cuifang Kuang, Rui Qiao; Guiren Wang Ultrafast Measurement of Transient Electroosmotic Flow in Microfluidics. Microfluidics and nanofluidics. 11:353-358. 2011

  50. C. Kuang, W. Zhao, G. Wang Far-field optical nanoscopy based on continuous wave laser stimulated emission depletion. Review of Scientific Instruments 81, 053709, (2010).

  51. F. Yang, X. Yang, H. Jiang, P. Bulkhaults, P. Wood, W. Hrushesky, G.R. Wang, Dielectrophoresis Separation of Colorectal Cancer Cells. Biomicrofluidics, 4, 013204 (2010).

  52. C. Kuang, G. Wang Far-field nanoscopic velocimeter for nanofluidics. Lab-on-a-Chip. 10, 240–245, (2010).

  53. M. Yakut Ali, C. Kuang, J. Khan, G.R. Wang, A Dynamic Piezoelectric Micropumping Phenomenon. Microfluidics and nanofludiics, 9:385–396, (2010).

  54. Kuang, CF; Zhao, W; Yang, F. and Wang, G. (2009) Study of the Rise Time in Electroosmotic Flow within a Microcapillary. Analytical Chemistry. 81, 6590–6595.

  55. Wang, Y;  Pant, K.; Chen, Z.; Wang, G.; Diffey, WF; Ashley, P. Shivshankar Sundaram (2009) Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow. Microfluidics and nanofludics. 7:683–696.

  56. Kuang, CF; Zhao, W; Yang, F. and Wang, G. (2009) Measuring flow velocity distribution in microchannels using molecular tracers. Microfluidics and nanofludiics. 7:509–517.

  57. Wang, G.R; Sas, I; Jiang, H; Janzen, W.P; Hodge, C.N. (2008) Photobleaching-based flow measurement in a commercial capillary electrophoresis chip instrument.  Electrophoresis. 29, 1253–1263.

  58. Wang, G. R. (2006) On large structures and turbulent mixing in confined mixing layers under forcing. AIChEJ. 52, 111-124.

  59. Wang, G. R. (2005) Laser-induced fluorescence photobleaching anemometer for microfluidic devices. Lab on a Chip, 5, 450 – 456.

  60. Wang, G. R., Santiago, J. G., Mungal, M. G. Yang, B., & Papademetriou S., (2004) A laser induced cavitation pump. Journal of Micromechanics and Microengineering. 14, 1037-1046.

  61. Wang, G. R. (2003) A rapid mixing process in continuous operation under periodic forcing. Chemical Engineering Science. 58, 4953-4963.

  62. Wang, G. R.; Fiedler, H. E. (2000) On high spatial resolution scalar measurement with LIF. Part 1: Photobleaching and Thermal Blooming. Experiments in Fluids. 29, 257-264.

  63. Wang, G. R.; Fiedler, H. E. (2000) On high spatial resolution scalar measurement with LIF. Part 2: The Noise Characteristics. Experiments in Fluids. 29, 265-274.

  64. Dai, G. C., Wang, G. R., Fan, Z. H. (1989a) Transition from laminar to turbulent flow in artificially roughened pipes. J. East China Institute of Chemical Technology. 15, 580-584.

  65. Dai, G. C., Fan, Z. H, Wang, G. R. (1989b) Flow resistance in repeated-rib tubes. J. East China Institute of Chemical Technology, 15, 300-304.

  66. Fan, Z. H, Dai, G. C., Jin, D. Y., Wang, G. R. (1989c) Turbulent flow in artificially roughened pipes. J. East China Institute of Chemical Technology, 15, 305-312.

  67. Wang, G. R; Zhang, B. G. (1984) Study of heat transfer of the horizontal immersed tubes in fluidized beds.  J. Fushun Petroleum Institute. No. 2.  

background.JPG
bottom of page